
CENG3430 Rapid Prototyping of Digital Systems

Lecture 10:

VHDL versus Verilog

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• VHDL & Verilog: Background & Design Concept

• VHDL vs. Verilog

– Modeling Capacity

– Syntax & Popularity

– Overall Structure

– I/O Declaration

– Concurrent Statements

– Sequential Statements

• Non-blocking Assignment: Combinational Logic

• Blocking Assignment: Sequential Logic

– Structural Design

– Design Constructions

– Example: Flip-flop with Synchronous Reset
CENG3430 Lec10: VHDL versus Verilog 2

What are VHDL and Verilog?

• They are both hardware description languages for

modeling hardware.

• They are each a notation to describe the behavioral

and structural aspects of an electronic digital circuit.

CENG3430 Lec10: VHDL versus Verilog 3

VHDL: Background

• VHSIC Hardware Description Language

– VHSIC: Very High Speed Integrated Circuit.

• Developed by the department of defense (1981)

– In 1986 rights where given to IEEE.

– Became a standard and published in 1987.

– Revised standard we know now published in 1993 (VHDL

1076-1993) regulated by VHDL international (VI).

CENG3430 Lec10: VHDL versus Verilog 4

VHDL: Design Concept

• VHDL uses top-down approach to partition design
into small blocks (i.e., “components”)

– Entity: Describe interface signals & basic building blocks

– Architecture: Describe behavior, each entity can have

multiple Architectures

– *Configuration: Specify different architectures for a single

entity

• The internals can change while the interface remains the same.

• It is not required to get a basic VHDL design running.

– *Package: Contain user-defined subprograms, constant

definitions, and/or type definitions to be used throughout

one or more design units

*: optional
CENG3430 Lec10: VHDL versus Verilog 5

Verilog: Background

• Developed by Gateway Design Automation (1980)

– Later acquired by Cadence Design(1989) who made it

public in 1990

– Became a standardized in 1995 by IEEE (Std 1364)

regulated by Open Verilog International (OVI)

CENG3430 Lec10: VHDL versus Verilog 6

Verilog: Design Concept

• Verilog only has one building block: module

– There is only one module per file (.v) usually.

– Modules connect through their ports (similarly as in VHDL).

– A top level module invokes instances of other modules.

• Modules can be specified behaviorally or structurally.

– Behavioral: Define behavior of digital system.

• Similarly as the behavioral design (“process”) in VHDL

– Structural: Define hierarchical interconnection of modules.

• Similarly as the structural design (“port map”) in VHDL

CENG3430 Lec10: VHDL versus Verilog 7

Modeling Capacity

• High-Level: VHDL is better.

– VHDL has more features for

high-level hardware modeling.

• Such as user-defined data types,

package, configuration, library

management.

• Low-Level: Verilog is better.

– Verilog is originally created for

modeling logic gates.

– Verilog has built-in primitives

or low-level logic gates.

– Verilog supports user-defined

primitives (UDP).

CENG3430 Lec10: VHDL versus Verilog 8

System

Algorithm

RTL

Logic

Gate

HDL Modeling

Capacity

VHDL

Verilog

IC Design Flow

CENG3430 Lec10: VHDL versus Verilog 9

System

Algorithm

RTL

Logic

Gate

HDL Modeling

Capacity

VHDL

Verilog

Syntax, Popularity

Programming Style (Syntax)

VHDL is similar to Ada

programming language.

Verilog is similar to C/Pascal

programming language.

VHDL is NOT case-sensitive. Verilog is case-sensitive.

VHDL is more “verbose”

than Verilog.

CENG3430 Lec10: VHDL versus Verilog 10

Popularity

VHDL is more popular with

European companies.

Verilog is more popular with

US companies.

Overall Structure

VHDL

-- Library Declaration

library IEEE;

…

-- Entity Declaration

entity mux is

…

end mux

-- Architecture Body

architecture arch of mux is

begin

…

end arch;

Verilog

// One Module

module mux (a, b, s, y);

…

endmodule
CENG3430 Lec10: VHDL versus Verilog 11

I/O Declaration

VHDL

-- Library Declaration

…

-- Entity Declaration

entity mux is

port(a,b,s: in std_logic;

y: out std_logic);

end mux

-- Architecture Body

architecture arch of mux is

begin

…

end arch;

Verilog

// One Module

module mux (a, b, s, y);

input a,b,s;

output y;

…

endmodule
CENG3430 Lec10: VHDL versus Verilog 12

Concurrent Statement: assign

CENG3430 Lec10: VHDL versus Verilog 13

VHDL: inside architecture body, outside the process
signal a, b: std_logic_vector(7 downto 0);

signal c, d, e: std_logic;

a(3 downto 0) <= b(7 downto 4);

b <= “00001010”;

c <= d and e;

Verilog: outside the always block
wire [7:0] a, b;

wire c, d, e;

assign a[3:0] = c[7:4];

assign a[7:4] = 'b0000; // binary

assign a = b & c; // logical AND

assign:

• Assignments outside an
always block are concurrent.

• LHS must be wire.

• The LHS will be updated

whenever RHS changes.

Class Exercise 10.1

CENG3430 Lec10: VHDL versus Verilog 14

Student ID:

Name:

Date:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity abc is

port (a,b,c: in std_logic;

y: out std_logic);

end abc;

architecture abc_arch of

abc is

signal x : std_logic;

begin

x <= a nor b;

y <= x and c;

end abc_arch;

• Translate the following VHDL program to Veirlog:

Sequential Statement: = or <=

CENG3430 Lec10: VHDL versus Verilog 16

VHDL

architecture arch of ex is

begin

process (…)

begin

-- LHS could be signals or

variables

-- signal assignment (<=)

-- or

-- variable assignment (:=)

end;

end arch;

Verilog

module ex (…);

reg a, b, c;

always @(…)

begin

// LHS must be reg (not wire)

// blocking assignment (=)

for combinational logic

// or

// non-blocking assignment

(<=) for sequential logic

end

endmodule

Blocking Assignment: Combinational Logic

• Blocking Assignment (=): Executed before the execution
of the statements in a sequential block (e.g., always block).

– A blocking assignment (=) will evaluate the RHS and

perform the LHS assignment immediately.

• The second assignment is performed, once the first one is complete.

• The assignments are executed in a sequential way.

• Usage: Use blocking assignment (=) for always

blocks that are purely combinational logic.
reg t1, t2, t3;

always @(a or b) begin

t1 = a & b; // logical AND

t2 = c | d; // logical OR

t3 = t1 | t2;

end

CENG3430 Lec10: VHDL versus Verilog 17

Non-blocking Assignment: Sequential Logic

• Non-blocking Assignment (<=): Schedule assignments
without blocking the procedural flow.
– A non-blocking assignment (<=) samples RHS at the

beginning of a clock edge; with the actual LHS assignment

taking place at the end of that clock edge.

• Usage: Use non-blocking assignments (<=) in always

blocks to synthesize/simulate sequential logic.
reg y1, y2;

always @(posedge clk)

begin

y1 <= a;

y2 <= y1;

end
CENG3430 Lec10: VHDL versus Verilog 18

a y1 y2

clk

D Q D Q

“wire” vs. “reg” in Verilog

• Wire: Has no memory

– Physical wire in the circuit

– A wire does not store its value, it must be driven by

• Connecting the wire to the output of a gate or module, or

• Assigning a value to the wire in a concurrent assignment

– Usage: Cannot use “wire” in left-hand-side of

assignments in always blocks.

• Register: Has memory

– Not “register” of CPU

– Could be a flip-flop (DFF) or a physical wire

– Holding value until a new value is assigned

– Usage: Cannot use “reg” in left-hand side of assignments

outside always blocks (i.e., concurrent assignment)
CENG3430 Lec10: VHDL versus Verilog 19

Structural Design in VHDL (1/2)

CENG3430 Lec10: VHDL versus Verilog 20

Component B Component C

Connected by port map in architecture body

Component A

• Structural Design in VHDL: Like a circuit but describe

it by text.

• Design Steps:

Step 1: Create entities

Step 2: Create components from entities

Step 3: Use “port map” to relate the components

Step 2

Step 1

Step 1

Structural Design in VHDL (2/2)

CENG3430 Lec10: VHDL versus Verilog 21

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity and2 is

4 port (a,b: in STD_LOGIC;

5 c: out STD_LOGIC);

6 end and2;

7 architecture and2_arch of and2 is

8 begin

9 c <= a and b;

10 end and2_arch;

11 ---------------------------------

12 library IEEE;

13 use IEEE.STD_LOGIC_1164.ALL;

14 entity or2 is

15 port (a,b: in STD_LOGIC;

16 c: out STD_LOGIC);

17 end or2;

18 architecture or2_arch of or2 is

19 begin

20 c <= a or b;

21 end or2_arch;

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 --

4 entity test is

5 port (in1: in STD_LOGIC; in2: in STD_LOGIC;

6 in3: in STD_LOGIC;

7 out1: out STD_LOGIC);

8 end test;

9 architecture test_arch of test is

10 component and2 --create component

11 port (a,b: in std_logic; c: out std_logic);

12 end component ;

13 component or2 --create component

14 port (a,b: in std_logic; c: out std_logic);

15 end component ;

16 signal inter_sig: std_logic;

17 begin

18 label1: and2 port map (in1, in2, inter_sig);

19 label2: or2 port map (inter_sig, in3, out1);

20 end test_arch;

Step 3

Structural Design in Verilog (1/2)

• Structural Design in Verilog: One top module, several

(sub) modules.

• Design Steps:

Step 1: Create (sub) module(s) (usually in separate .v files)

Step 2: Define a top-module to interconnect module(s)

CENG3430 Lec10: VHDL versus Verilog 22

Top Module

Module Module Module

Connected by relating I/O and internal wires

Step 2

top_module.v

module top_module(

input in1, input in2, input in3,

output out1);

wire inter_sig;

and2 and2_ins(

.a(in1),

.b(in2),

.c(inter_sig)

);

or2 or2_ins(

.a(inter_sig),

.b(in3),

.c(out1)

);

endmodule

Step 1

Step 1

Structural Design in Verilog (2/2)

CENG3430 Lec10: VHDL versus Verilog 23

and2.v

module and2(

input a,

input b,

output c

);

assign c = a && b;

endmodule

or2.v

module or2(

input a,

input b,

output c

);

assign c = a || b;

endmodule

Class Exercise 10.2

CENG3430 Lec10: VHDL versus Verilog 24

Student ID:

Name:

Date:

• Implement the following circuit in Veirlog:

in1

in3

out2

in2

out1

in4

out3

Design Constructions (1/4)

VHDL: when-else (concurrent, outside process)

architecture arch of ex is

begin

out1 <= '1' when in1 = '1' and in2 = '1' else '0';

end arch ex_arch;

Verilog: assign ? : (concurrent, outside always@ block)

module ex (…);

assign out1 = (in1=='b1 && in2=='b1) ? 'b1 : 'b0;

// 'b: binary; 'o: octal; 'd: decimal; 'h: hexadecimal

endmodule

CENG3430 Lec10: VHDL versus Verilog 26

in1

in2
out1

Design Constructions (2/4)

VHDL: if-then-else

(sequential, inside process)
process(in1, in2)

begin

if in1=‘1’ and in2=‘1’

then

out1 <= '1';

else

out1 <= '0';

end if;

end process;

Verilog: if-else

(sequential, inside always@)
always @(in1, in2)

begin

if (in1=='b1 && in2=='b1)

begin

out1 = 'b1;

end

else

begin

out1 = 'b0;

end

end
CENG3430 Lec10: VHDL versus Verilog 27

in1

in2
out1

Design Constructions (3/4)

VHDL: case-when

(sequential, inside process)
process(b)

begin

case b is

when "00"|"11" =>

out1 <= '0';

out2 <= '1';

when others =>

out1 <= '1';

out2 <= '0';

end case;

end process;

Verilog: case

(sequential, inside always@)
always @(b)

begin

case (b)

'b00 || 'b11:

out1 = 'b0;

out2 = 'b1;

default:

out1 = 'b1;

out2 = 'b0;

endcase

end
CENG3430 Lec10: VHDL versus Verilog 28

in1

in2
out1

Design Constructions (4/4)

CENG3430 Lec10: VHDL versus Verilog 29

VHDL: for-in-to-loop

(sequential, inside process)
process(in1)

begin

for i in 0 to 3 loop

out1(i) <= not in1(i);

end loop;

end process;

Verilog: for-loop

(sequential, inside always@)
always @(in1)

begin

for(idx=0; idx<4; idx+=1)

begin

out1[idx] = ~in1[idx];

end

end

in1(3:0) out1(3:0)

Example: Flip-flop with Sync. Reset

CENG3430 Lec10: VHDL versus Verilog 30

VHDL
entity dff is
port(D,CLK,RESET:

in std_logic;
Q: out std_logic);

end dff;
architecture dff_arch of
dff is begin
process(CLK) begin
if rising_edge(CLK) then
if (RESET = '1') then
Q <= '0';

else
Q <= D;

end if;
end if;

end process;
end dff_arch;

Verilog
module dff(

input D,
input CLK,
input RESET,

output reg Q); // why?
always @(posedge CLK)
begin

if (RESET) begin

Q <= 1'b0; // non-blocking
end
else begin

Q <= D; // non-blocking
end

end
endmodule

Example: Flip-flop with Async. Reset

CENG3430 Lec10: VHDL versus Verilog 31

VHDL
entity dff is
port(D,CLK,RESET:

in std_logic;
Q: out std_logic);

end dff;
architecture dff_arch of
dff is begin
process(CLK) begin
if rising_edge(CLK) then
if (RESET = '1') then
Q <= '0';

else
Q <= D;

end if;
end if;

end process;
end dff_arch;

Verilog
module dff(

input D,
input CLK,
input RESET,

output reg Q); // why?
always @(posedge CLK or

posedge RESET)
begin
if (RESET) begin

Q <= 1'b0; // non-blocking
end
else begin

Q <= D; // non-blocking
end

end
endmodule

Summary

• VHDL & Verilog: Background & Design Concept

• VHDL vs. Verilog

– Modeling Capacity

– Syntax & Popularity

– Overall Structure

– I/O Declaration

– Concurrent Statements

– Sequential Statements

• Non-blocking Assignment: Combinational Logic

• Blocking Assignment: Sequential Logic

– Structural Design

– Design Constructions

– Example: Flip-flop with Synchronous Reset
CENG3430 Lec10: VHDL versus Verilog 32

